MATH 590: QUIZ 5 SOLUTIONS

Name:

1. Let $T: V \rightarrow W$ be a linear transformation of vectors spaces with scalars in F. Define: (a) The kernel of T and (b) The image of T. (2 points)

Solution. The kernel of T is the set of vectors $v \in V$ such that $T(v)=\overrightarrow{0}$ and the image of T is the set of vectors $w \in W$ that can be written as $w=T(v)$, for some $v \in V$.
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(x, y)=(y, x)$ and $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $S(x, y)=(x+7, x-y)$. Let $\alpha:=\{(-1,1),(0,1)\}, \beta:=\{(1,0),(1,1)\}$, and $\gamma:=\{(0,-1),(-2,0)\}$ be bases for \mathbb{R}^{2}. Verify that $[S T]_{\alpha}^{\gamma}=[S]_{\beta}^{\gamma} \cdot[T]_{\alpha}^{\beta}$. (4 points)

Solution. We have $S T(-1,1)=S(1,-1)=(8,2)=-2(0,-1)+-4(-2,0)$ and $S T(0,1)=S(1,0)=(8,1)=$ $-1(0,-1)+-4(-2,0)$. Thus, $[S T]_{\alpha}^{\gamma}=\left(\begin{array}{cc}-2 & -1 \\ -4 & -4\end{array}\right)$. On the other hand,
$T(-1,1)=(1,-1)=2(1,0)+-1(1,1)$ and $T(0,1)=(1,0)=1(1,0)+0(1,1)$. Thus, $[T]_{\alpha}^{\beta}=\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)$.
$S(1,0)=(8,1)=-1(0,-1)+-4(-2,0)$ and $S(1,1)=(8,0)=0(0,-1)+-4(-2,0)$. Thus, $] S]_{\beta}^{\gamma}=$ $\left(\begin{array}{cc}-1 & 0 \\ -4 & -4\end{array}\right)$.
Therefore,

$$
[S]_{\beta}^{\gamma} \cdot[T]_{\alpha}^{\beta}=\left(\begin{array}{cc}
-1 & 0 \\
-4 & -4
\end{array}\right) \cdot\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-2 & -1 \\
-4 & -4
\end{array}\right)=[S T]_{\alpha}^{\gamma} .
$$

3. $A=\left(\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right)$, and write C_{1}, C_{2}, C_{3} for the columns of A. Verify that $A \cdot\left(\begin{array}{c}u \\ v \\ w\end{array}\right)=u C_{1}+v C_{2}+w C_{3}$. (4 points)

Solution. On the one hand, $A \cdot\left(\begin{array}{l}u \\ v \\ w\end{array}\right)=\left(\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right) \cdot\left(\begin{array}{c}u \\ v \\ w\end{array}\right)=\left(\begin{array}{l}u a+v d+w g \\ u b+v e+w h \\ u c+v f+w i\end{array}\right)$. While on the other hand,

$$
u C_{1}+v C_{2}+w C_{3}=u\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+v\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right)+w\left(\begin{array}{l}
g \\
h \\
i
\end{array}\right)=\left(\begin{array}{l}
u a+v d+w g \\
u b+v e+w h \\
u c+v f+w i
\end{array}\right)
$$

which gives what we want.

